硅光伏电池原理

太阳能电池的原理及制作
作者:魏锐 文章来源:本站原创
点击数:2508 更新时间:1/3/2006
太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。
制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。
一、硅太阳能电池
1.硅太阳能电池工作原理与结构
太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下:
china-heatpipe/heatpipe05/05/2008-10-17/810174694339.htm
图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。
当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图:
图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成Ppositive)型半导体。
同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成Nnegative)型半导体。黄的为磷原子核,红的为多余的电子。如下图。
N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。
P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到谢宁方法P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P孕妇死亡内电场,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。
当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示)
由于半导体不是电的良导体,电子在通过pn结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖pn结(如图 梳状电极),以增加入射光的面积。
另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用。为此,科学家们给它涂上了一层反射系数非常小的保护膜(如图),将反射损失减小到5%甚至更小。一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使
用,形成太阳能光电板。
2.硅太阳能电池的生产流程
通常的晶体硅太阳能电池是在厚度350450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。
上述方法实际消耗的硅材料更多。为了节省材料,目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。
化学气相沉积知道 > 余下全文
主要是以SiH2Cl2SiHCl3SiCl4SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用SiSiO2Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用 LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目
前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。 三、纳米晶化学太阳能电池 在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但由于成本居高不下,远不能满足大规模推广应用的要求。为此,人们一直不断在工艺、新材料、电池薄膜化等方面进行探索,而这当中新近发展的纳米TiO2晶体化学能太阳能电池受到国内外科学家的重视。 fda以染料敏化纳米晶体太阳能电池(DSSCs)为例,这种电池主要包括镀有透明导电膜的玻璃基底,染料敏化的半导体材料、对电极以及电解质等几部分。 阳极:染料敏化半导体薄膜(TiO2膜) 阴极:镀铂的导电玻璃 电解质:I3-/I- 如图所示,白小球表示TiO2,红小球表示染料分子。染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO2导带中的电于最终进入导电膜,然后通过外回路产生光电流。 纳米晶TiO2太阳能电池的优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/51/10.寿命能达到20年以上。但由于此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场。 四、染料敏化TiO2太阳能电池的手工制作 1.制作二氧化钛膜 (1)先把二氧化钛粉末放入研钵中与粘合剂进行研磨 (2)
着用玻璃棒缓慢地在导电玻璃上进行涂膜 (3)把二氧化钛膜放入酒精灯下烧结1015分钟,然后冷却 2.利用天然染料为二氧化钛着 如图所示,把新鲜的或冰冻的黑梅、山梅、石榴籽或红茶,加一汤匙的水并进行挤压,然后把二氧化钛膜放进去进行着,大约需要5分钟,直到膜层变成深紫,如果膜层两面着的不均匀,可以再放进去浸泡5分钟,然后用乙醇冲洗,并用柔软的纸轻轻地擦干。 3.制作正电极 由染料着的TiO2为电子流出的一极(即负极)。正电极可由导电玻璃的导电面(涂有导电的SnO2膜层)构成,利用一个简单的万用表就可以判断玻璃的那一面是可以导电的,利用手指也可以做出判断,导电面较为粗糙。如图所示,把非导电面标上‘+’,然后用铅笔在导电面上均匀地涂上一层石墨。 4.加入电解质 利用含碘离子的溶液作为太阳能电池的电解质,它主要用于还原和再生染料。如图所示,在二氧化钛膜表面上滴加一到两滴电解质即可。 5.组装电池 把着后的二氧化钛膜面朝上放在桌上,在膜上面滴一到两滴含碘和碘离子的电解质,然后把正电极的导电面朝下压在二氧化钛膜上。把两片玻璃稍微错开,用两个夹子把电池夹住,两片玻璃暴露在外面的部分用以连接导线。这样,你的太阳能电池就做成了。 6.电池的测试 在室外太阳光下,检测你的太阳能电池是否可以产生电流。 参考文献 www./energy1/2004-2/20042467.html www.kyocerasolar/index.
htm shiba.hpe.sh/...x.html 同学:什么是硅光电池?它的主要特性是什么? 老师:硅光电池是一种直接把光能转换成电能的半导体器件。它的结构很简单,核心部分是一个大面积的PN(9)。大家可以自己做一个简单的实验,把一只透明玻璃外壳的点接触型二极管与一块微安表接成闭合回路,当二极管的管芯(PN)受到光照时,你就会看到微安表的表针发生偏转,显示出回路里有电流,这个现象称为光生伏特效应。硅光电池的PN结面积要比二极管的PN结大得多,所以受到光照时产生的电动势和电流也大得多。例如,国产2CR型硅光电池在100mW/cm2的入射光强下,开路电压(需用高内阻的直流毫伏计测量)450600mV,短路电流为1630mA,转换效率为6%~12%。 同学:硅光电池的受光面为什么是蓝的?硅光电池可以串联和并联吗? 老师:为了减少光线在硅光电池表面的反射,在它的表面还蒸有一层一氧化硅抗反射膜,可以使反射系数由30 光伏技术、产业及市场 简述 摘自中国电子报 光伏技术可直接将太阳的光能转换为电能,用此技术制作的光电池使用方便,特别是近年来微小型半导体逆变器迅速发展,促使其应用更加快捷。美、日、欧和发展中国家都制定出庞大的光伏技术发展计划,开发方向是大幅度提高光电池转换效率和稳定性,降低成本,不断扩大产业。目前已有80多个国家和地区形成商业化、半商业化生产能力,年均增长达16%,市场开拓从空间转向地面系统应用,甚至用于驱动交通工具。
据报道,全球发展、建造太阳能住宅(光电池 作屋顶、外墙、窗户等建材用)投资规模为600亿美元,而到2005年还会再翻一倍达1200亿美元,光伏技术制作的光电池有望成为21世纪的新能源。以下按其材料分类,展示光伏技术、产业及市场发展动向。 晶体硅光电池 晶体硅光电池有单晶硅与多晶硅两大类,用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结而制作成的,生产技术成熟,是光伏市场上的主导产品。采用埋层电极、表面钝化、强化陷 光、密栅工艺、优化背电极及接触电极等技术,提高材料中的载流子收集效率,优化抗反射膜、 凹凸表面、高反射背电极等方式,光电转换效率有较大提高。单晶硅光电池面积有限,目前比较大的为标致3072.0Φ1020cm的圆片,年产能力46MWa。目前主要课题是继续扩大产业规模,开发带状硅光电池技术,提高材料利用率。国际公认最高效率在AM1.5条件下为24%,空间用高质量的效率在AM0条件约为13.5?18%,地面用大量生产的在AM1条件下多在11?18%之间。以定向凝固法生长的铸造多晶硅锭代替单晶硅,可降低成本,但效率较低。优化正背电极的银浆和铝浆丝网印刷,切磨抛工艺,千方百计进一步降成本,提高效率,大晶粒多晶硅光电池的转换效率最高达18.6%。 非晶硅光电池 a-Si(非晶硅)光电池一般采用高频辉光放电方法使硅烷气体分解沉积而成的。由于分解沉积温度低,可在玻璃、不锈钢板、陶瓷板、柔性塑料片上沉积约1μm厚的薄膜,易于大面积
0.5m×1.0m),成本较低,多采用p in结构。为提高效率和改善稳定性,有时还制成三层p in 等多层叠层式结构,或是插入一些过渡层。其商品化产量连续增长,年产能力45MWa10MW生产线已投入生产,全球市场用量每月在1千万片左右,居薄膜电池首位。发展集成型a-Si光电池组 件,激光切割的使用有效面积达90%以上,小面积转换效率提高到14.6%,大面积大量生产的为8-10%,叠层结构的最高效率为21%。研发动向是改善薄膜特性,精确设计光电池结构和控制各层厚度,改善各层之间界面状态,以求得高效率和高稳定性。 多晶硅光电池 p-Si(多晶硅,包括微晶)光电池没有光致衰退效应,材料质量有所下降时也不会导致光电池受影响,是国际上正掀起的前沿性研究热点。在单晶硅衬底上用液相外延制备的p-Si光电池转 换效率为15.3%,经减薄衬底,加强陷光等加工,可提高到23.7%,用CVD法制备的转换效率约为 12.6-17.3%。采用廉价衬底的p-Si薄膜生长方法有PECVD和热丝法,或对a-SiH材料膜进行后退火,达到低温固相晶化,可分别制出效率9.8%和9.2%的无退化电池。微晶硅薄膜生长与a-Si工艺相容,光电性能和稳定性很高,研究受到很大重视,但效率仅为7.7%。大面积低温p-Si膜与-Si组成叠层电池结构,是提高a-S光电池稳定性和转换效率的重要途径,可更充分利用太阳光谱,理论计算表明其效率可在28%以上,将使硅基薄膜光电池性能产生突破性进展。铜铟硒光电池 CIS(铜铟
硒)薄膜光电池已成为国际光伏界研究开发的热门课题,它具有转换效率高(已达到17.7%),性能稳定,制造成本低的特点。CIS光电池一般是在玻璃或其它廉价衬底上分别沉积多层膜而构成的,厚度可做到2?3μm,吸收层CIS膜对电池性能起着决定性作用。现已开发出反应共蒸法和硒化法(溅射、蒸发、电沉积等)两大类多种制备方法,其它外层通常采用真空蒸发或 溅射成膜。阻碍其发展的原因是工艺重复性差,高效电池成品率低,材料组分较复杂,缺乏控制薄膜生长的分析仪器。CIS光电池正受到产业界重视,一些知名公司意识到它在未来能源市场中的前景和所处地位,积极扩大开发规模,着手组建中试线及制造厂。 碲化镉光电池 CdTe(碲化镉)也很适合制作薄膜光电池,其理论转换效率达高速公路服务区设计30%,是非常理想的光伏材料。可采用升华法、电沉积、喷涂、丝网印刷等10种较简便的加工技术,在低衬底温度下制造出效率12%以上的CdTe光电池,小面积CdTe光电池的国际先进水平光电转换率为15.8%,一些公司正深入研究与产业化中试,优化薄膜制备工艺,提高组件稳定性,防范Cd对环境污染和操作者的健康危害。 砷化镓光电池 GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高 29.5%(一般在19.5%左右),产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,用MOCVD技术异质外延方法制造GaAs电池是降低成
本很有希望的方法。 其它材料光电池 InP(磷化铟)光电池的抗辐射性能特别好,效率达17?19%,多用于空间方面。采用SiGe单晶衬底,研制出在AM0条件下效率大于20%的GaAsSi异质结外延光电池,最高效率23.3%。Si GeGaAs结构的异质外延光电池在不断开发中,控制各层厚度,适当变化结构,可使太阳光中各耐热粘合剂 种波长的光子能量都得到有效利用,GaAs基多层结构光电池效率已接近40%。 展望 国内自1958年起研究光伏技术,目前正加速发展光伏技术,完善、提高及应用开发a-Si 制备技术,约有30个科研单位和10个生产厂,生产能力超过5.5MWa。由于受市场及材料问题的困扰,生产成本高,实际产量只有1.5-2MWa。在2001-2020年,拟实施光伏电源推动计划,发展户用光伏(50W)、小型光伏(10-0KW)、特种光伏系统和联网光伏电站规划,以市场带动技术发展。 人类生活的衣、食、住、行都离不开能源,开发新能源的光伏技术已成为国际上热门课题,每年都有大型国际性会议研讨光伏技术,MW级中、大型光伏电站正在全球建设和发展,10MW级的也已建成投产。展望21世纪,效率高、成本低的薄膜化光电池将占光伏技术的主导地位,附有太阳光发电系统的住宅将会逐渐普及,二十年代有望在空间建造太阳能电站,用微波或激光等电能传输技术将电能送到地面供电。有专家建议在各大洲建立大型光伏发电站,用超导电缆连接成全球性太阳能发电厂超导联网系统,使供电不受昼
夜变化影响,迎来一个光伏技术的新时代。 参考资料: sp/JXZY/HXSY/KWSY/200601/302.html
some_thing    2006-3

本文发布于:2023-06-23 16:17:14,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/120288.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电池   光电池   太阳能   材料   技术
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议