全国高中数学联赛竞赛大纲(修订稿)及全部定理内容

全国高中数学联赛竞赛大纲及全部定理内容
一、平面几何
1 数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。
2 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。了解下述定理:
在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。
鬼妻的丈夫
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。 平面凸集、凸包及应用。
二、代数
1 安徽太和中学在一试大纲的基础上另外要求的内容:
周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。 冲突理论
2 第二数学归纳法。
递归,一阶、二阶递归,特征方程法。 函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5 圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元交聘n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7 简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何
1、多面角,多面角的性质。三面角、直三面角的基本性质。
2、正多面体,欧拉定理。    3、体积证法。    4、截面,会作截面、表面展开图。
四、平面解析几何
1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。展璞计划              3、三角形的面积公式。
4、圆锥曲线的切线和法线。                  5、圆的幂和根轴。
五、其它
抽屉原理。 容斤原理。 极端原理。 集合的划分。 覆盖。
数学竞赛中涉及的重要定理
1、 第二数学归纳法:
有一个与自然数n有关的命题,如果:
(1)当n=1时,命题成立; 
(2)假设当n≤k时命题成立,由此可推得当n=k+1时,命题也成立。那么,命题对于一切自然数n来说都成立。
2、 棣美弗定理:
设复数z=r(cosθ+isinθ),其n次方z^n = r^n (cos(nθ)+isin(nθ)),其中n为正整数。
3、 无穷递降法:
证明方程无解的一种方法。其步骤为: 
假设方程有解,并设X为最小的解。从X推出一个更小的解Y。从而与X的最小性相矛盾。所以,方程无解。
4、 同余
两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余,记作 a ≡ b (mod m) ,
读作a同余于b模m,或读作a与b关于模m同余。 比如 26 ≡ 14 (mod 12)   
【定义】设m是大于1的正整数,a,b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a同余于b模m.。有如下事实:
(1)若a≡0(mod m),则m|a;       (2)a≡b(mod m)等价于a与b分别用m去除,余数相同.
5、欧几里得除法
即辗转相除法。  详见高中数学课标人教B版必修三
6、完全剩余类:
从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。例如,一个数除以4的余数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系。可以看出0和4,1和5,2和-2,3和11关于模4同余,这4组数分别属于4个剩余类。
7 高斯函数:
f(x)=ae-(x-b)^2/c^2  其中abc为实数常数 ,且a > 0.
8、费马小定理:
假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p) 假如p是质数,且a,p互质,那么 a的(p-1)次方除以p的余数恒等。
9、欧拉函数:
φ函数的值:通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2…pn为
x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。 
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。   
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。   
特殊性质:当n为奇数时,φ(2n)=φ(n), 证明于上述类似。
北极光俄语10、孙子定理:
此定理的一般形式是设m = m1 ,… ,mk 为两两互素的正整数,m=m1,…mk ,m=miMi,i=1,2,… ,k 。则同余式组x≡b1(modm1),…,x≡bk(modmk)的解为x≡M'1M1b1+…+M'kMkbk (modm)。式中M'iMi≡1 (modmi),i=1,2,…,k 。
11、裴蜀定理
对任何整数a、b和它们的最大公约
数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式):若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。   
它的一个重要推论是:a,b互质的充要条件是存在整数x,y使ax+by=1.
11、梅涅劳斯定理:
如果在△ABC的三边BC、CA、AB或其延长线上有点D、
E、F且D、E、F三点共线,则=1
12、梅涅劳斯定理的逆定理
如果在△ABC的三边BC、CA、AB或其延长线上
有点D、E、F,且满足=1,则D、E、F三点共线。
13、塞瓦定理:
设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、
M,则
14、塞瓦定理的逆定理:
设M、N、P分别在△ABC的
  边AB、BC、CA上,且满足,则AN、BP、CM相交于一点。
15、广勾股定理的两个推论
推论1:平行四边形对角线的平方和等于四边平方和。
推论2:设△ABC三边长分别为a、b、c,对应边上中线长分别为mambmc
则:ma=;mb=;mc=
16、三角形内、外角平分线定理
内角平分线定理:如图:如果∠1=∠2,则有
外角平分线定理:如图,AD是△ABC中∠A的外角平分线交BC的延长线与D,
则有
17、托勒密定理
四边形ABCD是圆内接四边形,则有AB·CD+AD·BC=AC·BD
18、三角形位似心定理:
如图,若△ABC与△DEF位似,则通过对应点的三直线AD、BE、CF共点于P
19、正弦定理
在△ABC中有(R为△ABC外接圆半径)
余弦定理
a、b、c为△ABC的边,则有:
  a2=b2+c2-2bc·cosA;    b2=a2+c2-2ac·cosB;    c2=a2+b2-2ab·cosC;   
20、西姆松定理:
点P是△ABC外接圆周上任意一点,PD⊥BC,PE⊥AC,PF⊥AB,D、E、F为垂足,则D、E、F三点共线,此直线称为西姆松线。
21、欧拉定理:
△ABC的外接圆圆心为O,半径为R,内切圆圆心为I,半径为r,记OI=d,则有:d2=R2-2Rr.
22、巴斯加线定理
圆内接六边形ABCDEF(不论其六顶点排列次序如何),其三组对边AB与DE、BC与EF、CD与FA的交点P、Q、R共线。

本文发布于:2024-09-19 20:14:53,感谢您对本站的认可!

本文链接:https://www.17tex.com/xueshu/30274.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:定理   函数   方程   三角形   大纲   直线   欧拉   集合
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议